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ABSTRACT

A central, unresolved problem of DNA microarray
technology is the interpretation of different signal
intensities from multiple probes targeting the same
transcript. We propose a competitive hybridization
model for DNA microarray hybridization. Our model
uses a probe-specific dissociation constant that is
computed with current nearest neighbor model and
existing parameters, and only four global param-
eters that are fitted to Affymetrix Latin Square
data. This model can successfully predict signal
intensities of individual probes, therefore makes it
possible to quantify the absolute concentration of
targets. Our results offer critical insights into the
design and data interpretation of DNA microarrays.

INTRODUCTION

Current DNA microarray technology utilizes multiple oli-
gonucleotide probes to detect the concentration of target
molecules. These probes, even though interrogating the
same target, often yield very different signal intensities.
Without understanding the physicochemistry underly-
ing this problem, the quantification of absolute gene
abundance is unattainable and inter-probe comparison is
unjustified, leaving DNA microarray technology severely
compromised.

A number of physical models have been proposed to
address this problem, mostly in the form of Langmuir
derivatives (1–10). The Langmuir model is a generic
mathematical form that also fits the description of first-
order chemical reactions, which is frequently used for
probe/target binding on DNA microarrays:

� ¼
T

Tþ K
; 1

where � is the fraction of occupied probes, T free target
concentration, K dissociation constant.

According to the Langmuir model, all probes should
saturate at the same level, which is clearly not the case

in microarray hybridizations. Various modifications were
proposed to accommodate this difference in saturation
levels. A generic version may be written as

� ¼
�T

Tþ K
; 2

where � is a probe-specific factor. While a physical mean-
ing of � is difficult to obtain, some (7,8) tried to explain �
through the washing step in microarray experiments. That
is, all probes reach the same saturation level in the end of
hybridization, but they lose the bound targets to different
extents during the washing step. This ‘washing model’
suggests a significant loss of signals upon each washing
cycle. In experimental observations, the first washing
cycle usually removes a considerable amount of partially
bound targets, but it is clear that signal intensities do not
decrease dramatically after extra washing cycles (11). This
contradicts the above ‘washing model’. Furthermore, the
Langmuir derivatives predict that, in response to increas-
ing target concentrations, probes with higher binding
affinities saturate first. In experimental observations, on
the contrary, low-affinity probes generally saturate first.
Although Langmuir models seem to work well on simple
surface hybridizations, no Langmuir derivative has ade-
quately predicted probe signals in ‘real’ experimental
settings, such as those in the Affymetrix Latin Square
data with complex backgrounds (12).
The best prediction of probe signals to date was

reported by Zhang et al. (13). They accounted for
both specific binding and nonspecific binding in the
form of T̂=ð1þ KÞ, where T̂ is total target concentration,
while fitting 83 parameters to the data. Mei et al. (14) also
sought a linear composition of binding energy, where the
single base energy contribution alone used 75 parameters.
Over-parameterization has been a concern in all these
previous studies and invited criticism on their general
applicability (15).
After all, a valid physical model of microarray hybrid-

ization will have to explain the probe difference through
sequence-specific thermodynamics, as its oligonucleotide
sequence is the defining property of a microarray probe.
The free energy of polynucleotide hybridization in bulk
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solution has been successfully described by a nearest
neighbor (NN) model (16,17). However, this NN model
is widely regarded as not applicable to high-density
microarray hybridization, as it was either modified and
re-parameterized (5,7,9,13,18), or abandoned (1,14,19).
We will first demonstrate that the NN model is applic-

able to probes free of secondary structures. With the ther-
modynamic component calculated from the NN model,
we then propose a new competitive hybridization model
to describe the kinetics. Our model, using only four global
parameters that are fitted to Affymetrix Latin Square
data, can successfully predict signal intensities of individ-
ual probes, and therefore, achieve the absolute quantifica-
tion of target concentrations.

METHODS

The Affymetrix Latin Square spike-in data U133A were
retrieved from (12). They contained 14�3 hybridizations
where spike-in targets were added at various concentra-
tions from 0 pM to 512 pM. Probe information was
obtained through (20), where only 30 of the 42 probesets
were found. A total of 365 probes matched to target
sequences. Among them, 10 probes with very low signal
intensities (under 900 at highest target concentration) were
removed. In total, 355 probes are included in this study.
Background was taken as the signal intensity at zero
spike-in concentration, and subtracted from data at
other concentrations. No normalization was performed
on these data. The probe self-folding energy, �Go, was
computed by RNAStructure [version 4.5, function
OligoWalk (21)]. Duplexing energy, �Gd, was computed
by the current NN model with the parameters from
Ref. (17). Compiled data and computational scripts used
in this study are available upon request.

RESULTS AND DISCUSSION

Thermodynamic predictability in DNAmicroarrays

Microarray probes and targets may form secondary struc-
tures by intramolecular self-folding. These structural
effects are not accounted for in the NN model, posing a
problem to the thermodynamic calculation. As a first step,
we investigated the structural effects through the self-
folding energy of probes, �Go. In the Affymetrix Latin
Square data (see Methods Section for details), about
45% of the probes can be selected by the criterion
�Go > �1. For these probes, a clear correlation appears
between log signal intensities (SI) at the highest target
concentration and the duplexing energy �Gd that are
computed by the current NN model with existing param-
eters (Figure 1, R2 ¼ 0:58). If the selection criterion is
relaxed to �Go > �2:5, 75% probes are included and
the logSI��Gd correlation has R2 ¼ 0:45 (data not
shown). However, the logSI��Gd correlation dimin-
ishes at lower target concentrations (data not shown).
These observations suggest that the current NN model
offers a certain degree of predictability, but they cannot
be accommodated by previous, Langmuir-like models.
A new kinetic model is needed.

A competitive hybridization model

We treat DNA microarray hybridization as two
subprocesses, the binding of targets to probes and the
dissociation of target/probe duplexes. Assuming that
equilibrium is reached at the end of hybridization and
the binding rate is the same for all target molecules
(see below), the dissociation rate is governed by the
duplexing energy between paired target/probe. A kinetic
equilibrium between binding and dissociation should be
observed.

Two types of targets are explicitly modeled: ‘specific
targets’ (perfect match) with probe-specific dissocia-
tion rate kd, and ‘cross-hybridizing targets’ with disso-
ciation rate kn. These cross-hybridizing targets are
present in large quantities because partially matching
sequences are abundant in a transcriptome. For the
moment, we simplify them as a uniform mixture with a
probe-nonspecific kn.

The target/probe duplex formation is commonly
believed to start with an initiation step, the base-pairing
between a small number of nucleotide bases, and then
extend to the rest of complementary regions (22,23). If
the initiation step sets the rate limit, the binding rate
should be hardly specific to probe sequences. We therefore
assume a single binding rate, kb, for all target molecules.
How the specific factors (24,25), including adsorption and
electrostatics (26), steric and brush effects (27) and label-
ing (19,28), come into play is not yet entirely clear. In this
study, we postulate that the available area of probe spots
is the limiting factor in adsorption, so that the binding
is described as

_nin
NAV

¼ ð1� �� �Þ � p � kb; 3

where _nin is the number of target molecules going into the
exposed probes over a unit of time, NA the Avogadro

Figure 1. Duplexing energy calculated by NN model correlates with
signal intensity at 512 pM, the highest spike-in target concentration,
for probes free of secondary structures (DG0>�1, 160 probes from
Affymetrix U133A data). Each dot represents a probe.
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constant, V the volume of hybridization solution. On the
right side, � is the fraction of probes bound to specific
targets, � the fraction of probes bound to cross-hybridiz-
ing targets. p is the total number of probes in unit of molar
concentration (for simplicity, as if they were dissolved in
the hybridization solution).

On the other hand, the dissociation is described by

_nout
NAV

¼ � � p � kd þ � � p � kn; 4

where _nout is the number of target molecules leaving target/
probe duplexes over a unit of time; kd and kn are dissocia-
tion rates for specific targets and cross-hybridizing targets,
respectively.

At equilibrium between binding and dissociation,

ð1� �� �Þ � p � kb ¼ � � p � kd þ � � p � kn 5

Equilibrium is established for both specific and cross-
hybridizing targets. The proportions of specific targets
and cross-hybridizing targets are determined by their
concentrations:

� � p � kd ¼
_nin

NAV
�
½T�

½T� þ ½N�
; 6

� � p � kn ¼
_nin

NAV
�
½N�

½T� þ ½N�
; 7

where ½T� is the concentration of free specific targets, ½N�
the concentration of free cross-hybridizing targets.

Equations (6) and (7) can be combined to express � as:

� ¼
kd½N�

kn½T�
� � 8

Then, Equations (5) and (8) give the fraction of specific
binding

� ¼
1

1þ kdð
1
kb
þ ð 1kn

þ 1
kb
Þ
½N�
½T�Þ

9

Here ½T�, the concentration of free specific target molec-
ules, is less than nominal spike-in concentration by the
amount of probe binding:

½T� ¼ T̂� � � p 10

with T̂ as the nominal spike-in concentration (total
amount).

We assume the concentration of cross-hybridizing tar-
gets, ½N�, is large and can be treated as constant in this
model. Let

� ¼ ð
1

kn
þ

1

kb
Þ½N�; 11

then Equation (9) becomes

� ¼
1

1þ kdð1=kb þ �=ðT̂� � � pÞÞ
12

An analytical solution of Equation (12) is

� ¼
1

p

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �

pT̂

1þ kd=kb

s �
; 13

where

� ¼
T̂

2
þ

pþ �kd
2ð1þ kd=kbÞ

14

It can be shown that the other analytical solution of
Equation (12), which bears a plus sign before the square
root, has no valid physical meaning and merits no further
discussion.
So �, the fraction of probes bound to specific targets, is

described by three global parameters: p, kb and �, one
probe-specific parameter kd and one variable T̂. kd can
be expressed as:

kd ¼ e
��Gd
RT ; 15

where R is the molar gas constant, T absolute temperature
(318K in the Affymetrix hybridization experiments), �Gd

the energy computed from NN model, � as a scaling factor
to account for binding to immobilized probes.
The physical meaning of our model is clear. Both spe-

cific binding � and cross-hybridization � compete for the
same probe sites. As a result, high affinity probes (small
kd) can achieve a higher fraction of specific binding, while
low-affinity probes (large kd) saturate at a lower fraction.
� serves as a cross-hybridization factor. We made assump-
tions that are important to real experimental settings: a
large quantity of cross-hybridizing targets are present; kb
is uniform for all targets and the adsorption is limited by
the available area of probe spots. These assumptions make
our model fundamentally different from previous compe-
titive kinetic models (29,30).
Experimentally, signal intensity is what is observed after

washing, where most of cross-hybridized targets have been
washed off:

SI ¼ A � � � pþ � þ �; 16

where SI is the observed signal intensity, � the residual
intensity from cross-hybridized targets, � scanner bias,
A the detection coefficient of fluorescence. As the unit of
signal intensities is arbitrarily digitized, it only comes to a
physical meaning through A.

Explanation to the logSI� DGd correlation

First of all, we shall demonstrate that our model is capable
of explaining the logSI��Gd correlation at high target
concentration in Figure 1.
Equation (12) can be rearranged to a logarithmic form:

log
�

1� �
¼ �logkd � logð1=kb þ �=ðT̂� � � pÞÞ 17

Note that the second item on the right side still contains
the probe-dependent variable �. However, at high target
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concentration, the bound targets are minor comparing
to free targets. This means, T̂� � � p, and T̂ � T̂� � � p.
Hence, Equation (17) at high target concentration is
approximated as:

log
�

1� �
¼ �logkd � logð1=kb þ �=T̂Þ 18

In a long range for 0 < � < 1, a linear approximation
can be drawn between log �

1�� and log�. As in Figure 2,

log
�

1� �
¼ 1:248 � log�þ 0:702 19

Combining Equations (15), (18) and (19), we get

log� ¼ �0:801 �
��Gd

RT
� 0:801 � logð1=kb þ �=T̂Þ � 0:563

20

At high target concentration, both cross-hybridization
and scanner bias can be neglected. Therefore Equation
(16) can be simplified to SI ¼ A � � � p. We substitute the
� in Equation (20) with SI=ðA � pÞ:

logSI ¼ �
0:801�

RT
�Gd þ C; 21

where C ¼ logðA � pÞ � 0:801 � logð1=kb þ �=T̂Þ � 0:563, a
constant for fixed T̂. Thus, logSI is inversely correlated
to �Gd. The observed logSI��Gd correlation is
explained by our competitive hybridization model. At
low T̂, the premise T̂ � T̂� � � p is less valid; as a result,
logSI is less correlated to �Gd. A similar effect may be
created by a very low �Gd, where a large fraction of tar-
gets is bound to probes and taken out of solution.
A bonus here is the determination of �. Since the coeffi-

cient for �Gd in Equation (21) should equate the slope in
Figure 1, we get � ¼ 0:140.

Procedure of fitting model to Latin Square data

In DNA microarray experiments, signal intensities are
measured in place of fluorescent densities of bound tar-
gets. However, common photomultiplier tube scanners
usually carry a significant nonlinearity for low signal
intensities (31). This means, the lower end of these
Affymetrix data may deviate from the true fluorescent
densities, a problem difficult to correct without knowledge
of the specific instrument calibration data. And the signals
from targets below 1 pM are hardly distinguishable from
backgrounds, therefore, data from spike-in concentration
1 pM and above are used for our modeling.

The model fitting is to match the theoretical calcula-
tion of signal intensity, bS, to the experimentally observed
counterpart �S: �S is defined from Equation (16):

�S ¼ SI� � � � 22

Here, the background levels � are observed values in these
Affymetrix data (signal intensities at zero spike-in con-
centration). With background � subtracted, the signal
intensity should approach zero when the target concentra-
tion approaches zero. However, there is usually a devia-
tion from zero that is known as scanner bias, �, which can
be therefore estimated by extrapolating the signal intensi-
ties at low target concentrations. For the data in this
study, � ¼ �20 is taken. This value of � is relatively small
and has no significant effect on our model parameters.
Though it is useful for stabilizing the small numbers in
the fitting process.

With the theoretical valuebS ¼ A � � � p; 23

Equation (13) can be written as

bS ¼ A �

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �

pT̂

1þ kd=kb

s �
; 24

where � is defined in Equation (14). In this equation, T̂ is
known, �S the observed value for bS, and kd can be calcu-
lated from Equation (15). So we only need to fit four
global parameters: A, p, kb and �.

We use a fitness function of weighted squares [similar to
(1)]. For a probe i, the fitting error is calculated as

Ei ¼
X
t

ðbSi;t � �Si;tÞ
2

�Si;t

; 25

where �S is observed signal intensity, bS the calculated value
by Equation (24), t one of the nominal target concentra-
tions T̂ (1–512 pM). Our model in Equation (24) is fitted
to the training data by minimizing the sum of Ei through
brute-force searches as heuristic ranges of the four param-
eters can be obtained based on their physical meanings.

A useful constraint to the fitting is the value of
P0 ¼ A � p. This is the signal intensity in Equation (23)
when � ¼ 1, often referred as the saturation level of
hybridization. It is obvious that P0 should be larger but
not infinitely larger than the highest signal intensityFigure 2. Linear relationship between log (�/(1� �)) and log�.
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observed in the experiment. When varying P0 is used, as
shown in Figure 3, the overall fitting results are not very
sensitive to P0 beyond a certain value. So we choose
P0 ¼ 30 000 here.

Probe signal intensities can be successfully modeled

Figure 1 shows that �Gd (hence kd) can be reasonably
approximated by the current NN model for the probes
free of secondary structures. We use half of these probes
to fit our competitive hybridization model, and determine
the four global parameters, A, p, kb and �. The evaluation
is then performed on the rest of probes.
The results indicate that our model captures the probe

properties well. Figure 4A shows the modeling of individ-
ual probe signals on both the training data and evaluation
data. Overall, the prediction on training data has
R2 ¼ 0:866 (Figure 4B), and R2 ¼ 0:880 on evaluation
data (Figure 4C). If we relax the probe selection criterion
to �Go > �2:5, about 75% of total probes are included,
with prediction R2 ¼ 0:844 (Figure 4D). The rest 25% of
probes, which are presumably under stronger influence
of secondary structures, can still be modeled with the
same parameters but less accuracy at R2 ¼ 0:735.
In the previous, heavily parameterized models, the best

prediction on logbS was correlation coefficient r ¼ 0:85
in Ref. (14) and r > 0:9 in Ref. (13). In comparison,
our model of four parameters produces r ¼ 0:889 for
all probes, and r ¼ 0:919 for 75% probes after a prelimin-
ary selection by secondary structures (i.e. Figure 4D).
In conclusion, our competitive hybridization model can
not only predict probe signals successfully, but also
opens up paths to future improvements.

Figure 3. The fitting result is not sensitive to P0 beyond a certain
value. All four parameters, A, p, kb and �, are fitted simultaneously.
P0=A � p; the fitting error is computed as in Equation (25).

Figure 4. Our model can successfully predict probe signal intensities. (A) The prediction on randomly chosen probes at random target concentra-
tions. Top: the training data; Bottom: the evaluation data. (B) Scatter plot of all training data. (C) Scatter plot of the evaluation data. The training
data are consisted of half of the probes from Figure 1, and evaluation data from the other half. (D) Extended evaluation on 266 (75% of total)
probes that satisfy �Go>�2.5. All signal intensities are in log scale. The parameters in this figure are A=33.408 (pM)�1, p=898 pM, kb=1.348E-
3 s-1 and �=245 500 pMs.
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Prediction of target concentrations

With the four global parameters, target concentration can
be calculated from Equation (12):

T̂ ¼ �pþ
kd�

1=�� kd=kb � 1
26

If we substitute � ¼ �S=Ap,

T̂ ¼
�S

A
þ

kd�

Ap= �S� kd=kb � 1
27

Since kd calculation is more accurate for probes free of
secondary structures, we focus on 19 out of the 30 probe-
sets (transcripts) in this study that have five or more
probes with �Go > �1. For these transcripts, Equation
(27) is applied to calculate a target concentration from
each probe. And the final concentration of a transcript
is taken as the median of the data from its probes
(Figure 5A). Figure 5B shows the prediction at gene
level for all 19 transcripts. In fact, comparable results
can be obtained by using the few probes with �Go > �1
alone. At low concentrations, the predicted values in
Figure 5B tend to be higher than the nominal concentra-
tions. We think this is likely to be a reflection of scanner
nonlinearity in the low signal range, which can be cor-
rected by an instrument calibration.

Discussion

In DNA microarray experiments, systematic variations
stem from sample preparation and instrument operations.
They are likely reflected in the global parameters of our
model, A, kb and �. Therefore, batch variations can be
expected in these parameters. The highest signal intensity

in the Latin Square data was about 16 000. Comparing
with the saturation level P0 ¼ 30 000, this means about
half of those probe sites are bound to specific targets at
T̂ ¼ 512 pM: Thus, the fitted value of p ¼ 898 pM (as in
Figure 4) seems to be reasonable. Since our model has
only four global parameters, they can be easily calibrated
if control probes are built into array design. For instance,
a set of targets complementary to the control probes can
be spiked into the hybridization at various concentrations.
Signal intensities of the control probes along with the
known target concentrations can then be used to calibrate
our model every time a hybridization experiment is
performed.

We would like to emphasize that kd is the only probe-
specific factor in our model, and therefore plays a pivotal
role in model accuracy. The accuracy of kd or �Gd in this
article is limited by the NN model, which is only a coarse
approximation and affected by probe/target secondary
structures. This can be improved but beyond the scope
of this current study.

We assumed a constant cross-hybridization factor � for
all probes, which may not be the case. Further research on
� may improve the accuracy of our model. We did not
deal with the background levels in this study, which are
not important to signals at high target concentration but
will affect signals at low concentrations. Background
levels have a clear dependency on �Gd, and are well
addressed in other studies (32,33).

Conclusion

Our study presents the first model of DNA microarray
hybridization that explains probe signal intensities
through sequence-based thermodynamic properties with-
out excessive parameter fitting. This fills in the long stand-
ing knowledge gap in DNA microarray hybridization. Our
model provides a mechanism of absolute quantification,

Figure 5. Prediction of transcript concentration. (A) Example of the 11 probes for transcript 205267_at. Dots are probes with �Go>�1, other
probes in crosses (slightly shifted horizontally for clarity). The transcript concentration (dashed line) is taken as the median value of all probes.
(B) Prediction of 19 transcripts that have five or more probes with �Go>�1. Correlation coefficient between nominal concentrations and the
predictions is r=0.89. Error bars are standard deviations of the 19 transcripts. The predicted values bend away from the ideal line (dashed) at low
concentrations probably because of scanner nonlinearity.
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and shall improve the quality control and reproducibility
of the technology. With only four global parameters, this
model can be easily calibrated through control features
that are built into microarrays, and adopted in practice.
We expect new design and quantification algorithms to
take advantage of our results.
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